The Structure of Crystalline Solids

ISSUES TO ADDRESS...

- How do atoms assemble into solid structures? (for now, focus on metals)
- How does the density of a material depend on its structure?
- When do material properties vary with the sample (i.e., part) orientation?

Energy and Packing

- Non dense, random packing

- Dense, ordered packing

Dense, ordered packed structures tend to have lower energies.

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals
-many ceramics
-some polymers

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures -rapid cooling
"Amorphous" = Noncrystalline

crystalline SiO_{2}
Adapted from Fig. 3.22(a), Callister 7e.
- Si - Oxygen

noncrystalline SiO_{2}
Adapted from Fig. 3.22(b), Callister 7e.

Section 3.3 - Crystal Systems

Unit cell: smallest repetitive volume which

 contains the complete lattice pattern of a crystal.

7 crystal systems

14 crystal lattices
a, b, and c are the lattice constants

Fig. 3.4, Callister $7 e$.

Section 3.4 - Metallic Crystal Structures

- How can we stack metal atoms to minimize empty space?

2-dimensions

VS.

Now stack these 2-D layers to make 3-D structures

Metallic Crystal Structures

- Tend to be densely packed.
- Reasons for dense packing:
- Typically, only one element is present, so all atomic radii are the same.
- Metallic bonding is not directional.
- Nearest neighbor distances tend to be small in order to lower bond energy.
- Electron cloud shields cores from each other
- Have the simplest crystal structures.

We will examine three such structures...

Simple Cubic Structure (SC)

- Rare due to low packing denisty (only Po has this structure)
- Close-packed directions are cube edges.
- Coordination \# = 6 (\# nearest neighbors)

Atomic Packing Factor (APF)

$$
\begin{aligned}
& \text { APF }=\frac{\text { Volume of atoms in unit cell* }}{\text { Volume of unit cell }} \\
& \text { *assume hard spheres }
\end{aligned}
$$

- APF for a simple cubic structure $=0.52$

1 atom/unit cell
Adapted from Fig. 3.23,

Body Centered Cubic Structure (BCC)

- Atoms touch each other along cube diagonals.
--Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.
ex: Cr, W, Fe (α), Tantalum, Molybdenum
- Coordination \# = 8

Adapted from Fig. 3.2, Callister 7e.

2 atoms/unit cell: 1 center + 8 corners x 1/8

Atomic Packing Factor: BCC

- APF for a body-centered cubic structure $=0.68$

Adapted from
Fig. 3.2(a), Callister 7
$\frac{\text { atoms }}{\text { unit cell }} \longrightarrow_{2} \frac{4}{3} \pi(\sqrt{3} a / 4)^{3} \longleftarrow \frac{\text { volume }}{\text { atom }}$

$$
\text { APF }=\longdiv { a ^ { 3 } \longleftarrow \frac { \text { volume } } { \text { unit cell } } }
$$

Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals.
--Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.
ex: Al, Cu, Au, Pb, Ni, Pt, Ag
- Coordination \# = 12

Adapted from Fig. 3.1, Callister 7e.
4 atoms/unit cell: 6 face $\times 1 / 2+8$ corners $\times 1 / 8$

Atomic Packing Factor: FCC

- APF for a face-centered cubic structure $=0.74$ maximum achievable APF

Close-packed directions:

$$
\text { length }=4 R=\sqrt{2} a
$$

Unit cell contains:
$6 \times 1 / 2+8 \times 1 / 8$
$=4$ atoms/unit cell
Adapted from
Fig. 3.1(a),
Callister 7e.
$\frac{\text { atoms }}{\text { unit cell }} \rightarrow 4 \frac{4}{3} \pi(\sqrt{2} a / 4)^{3}$
APF $=\frac{a^{3} \longleftarrow \frac{\text { volume }}{\text { atom }}}{\text { volume }}$
unit cell

FCC Stacking Sequence

- ABCABC... Stacking Sequence
- 2D Projection

A sites
B sites
C sites

- FCC Unit Cell

Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection

- Coordination \# = 12
- $\mathrm{APF}=0.74$
- c/a $=1.633$

Theoretical Density, ρ

$$
\begin{aligned}
\text { Density }=\rho & =\frac{\text { Mass of Atoms in Unit Cell }}{\text { Total Volume of Unit Cell }} \\
\rho & =\frac{n A}{V_{C} N_{A}}
\end{aligned}
$$

where

$$
\begin{aligned}
& n=\text { number of atoms/unit cell } \\
& A=\text { atomic weight } \\
& V_{C}=\text { Volume of unit cell }=a^{3} \text { for cubic } \\
& N_{\text {A }}=\text { Avogadro's number } \\
& =6.023 \times 10^{23} \text { atoms } / \mathrm{mol}
\end{aligned}
$$

Theoretical Density, ρ

- Ex: $\mathrm{Cr}(\mathrm{BCC})$
$A=52.00 \mathrm{~g} / \mathrm{mol}$
$R=0.125 \mathrm{~nm}$
$n=2$
$a=4 R / \sqrt{3}=0.2887 \mathrm{~nm}$

Densities of Material Classes

In general
$\rho_{\text {metals }}>\rho_{\text {ceramics }}>\rho_{\text {polymers }} \quad$ Metals
Graphite/
Ceramics/
Polymers
Composites/ Semicond
fibers
Why?
Metals have...

- close-packing (metallic bonding)
- often large atomic masses Ceramics have...
- less dense packing
- often lighter elements

Polymers have...

- low packing density (often amorphous)
- lighter elements (C,H,O)

Composites have...

- intermediate values

Crystals as Building Blocks

- Some engineering applications require single crystals: --diamond single
crystals for abrasives

(Courtesy Martin Deakins,
GE Superabrasives,
Worthington, OH. Used with permission.)
- Properties of crystalline materials often related to crystal structure.
--Ex: Quartz fractures more easily along some crystal planes than others.
--turbine blades
Fig. 8.33(c), Callister 7e.
(Fig. 8.33(c) courtesy
of Pratt and Whitney).

Polycrystals

Anisotropic

- Most engineering materials are polycrystals.

- Nb-Hf-W plate with an electron beam weld.
- Each "grain" is a single crystal.
- If grains are randomly oriented, overall component properties are not directional.
- Grain sizes typ. range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

Single vs Polycrystals

- Single Crystals
-Properties vary with direction: anisotropic.
-Example: the modulus of elasticity (E) in BCC iron:
$E($ diagonal $)=273 \mathrm{GPa}$

$\mathrm{E}($ edge $)=125 \mathrm{GPa}$

Data from Table 3.3, Callister 7e.
(Source of data is R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John Wiley and Sons, 1989.)

- Polycrystals
-Properties may/may not vary with direction. -If grains are randomly oriented: isotropic. (Epoly iron $=210 \mathrm{GPa}$)
-If grains are textured, anisotropic.

Adapted from Fig. 4.14(b), Callister $7 e$. (Fig. 4.14(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC [now the National Institute of Standards and Technology, Gaithersburg, MD].)

Section 3.6 - Polymorphism

- Two or more distinct crystal structures for the same material (allotropy/polymorphism)

Section 3.8 Point Coordinates

Point coordinates for unit cell center are

$$
a / 2, b / 2, c / 2 \quad 1 / 21 / 21 / 2
$$

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants \rightarrow identical position in another unit cell

Crystallographic Directions

Algorithm

1. Vector repositioned (if necessary) to pass through origin.
2. Read off projections in terms of unit cell dimensions a, b, and c
3. Adjust to smallest integer values
4. Enclose in square brackets, no commas
[uvw]

$$
\begin{array}{rll}
\text { ex: } 1,0,1 / 2 & \Rightarrow>2,0,1 & =>[201] \\
-1,1,1 & \Rightarrow>[\overline{111}] & \text { where overbar represents a } \\
& & \text { negative index }
\end{array}
$$

families of directions <uvW>

Linear Density

- Linear Density of Atoms \equiv LD $=$ Unit length of direction vector

ex: linear density of Al in [110] direction

$$
a=0.405 \mathrm{~nm}
$$

$\begin{aligned} & \text { \# atoms } \\ & \text { length } \xrightarrow{L D}=\frac{2}{\sqrt{2} a}=3.5 \mathrm{~nm}^{-1}\end{aligned}$

HCP Crystallographic Directions

Algorithm

1. Vector repositioned (if necessary) to pass through origin.
2. Read off projections in terms of unit cell dimensions a_{1}, a_{2}, a_{3}, or c
3. Adjust to smallest integer values
4. Enclose in square brackets, no commas
[uvtw]

Adapted from Fig. 3.8(a), Callister $7 e$.

$$
\text { ex: } \quad 1 / 2,1 / 2,-1,0 \quad=>\quad[11 \overline{2} 0]
$$

dashed red lines indicate projections onto a_{1} and a_{2} axes

HCP Crystallographic Directions

- Hexagonal Crystals
- 4 parameter Miller-Bravais lattice coordinates are related to the direction indices (i.e., u'v'w') as follows.

Fig. 3.8(a), Callister 7e.

$$
\begin{aligned}
& {\left[u^{\prime} v^{\prime} w^{\prime}\right] \rightarrow[u v t w] } \\
& u=\frac{1}{3}\left(2 u^{\prime}-v^{\prime}\right) \\
& v=\frac{1}{3}\left(2 v^{\prime}-u^{\prime}\right) \\
& t=-(u+v) \\
& w=w^{\prime}
\end{aligned}
$$

Crystallographic Planes

Crystallographic Planes

- Miller Indices: Reciprocals of the (three) axial intercepts for a plane, cleared of fractions \& common multiples. All parallel planes have same Miller indices.
- Algorithm

1. Read off intercepts of plane with axes in terms of a, b, c
2. Take reciprocals of intercepts
3. Reduce to smallest integer values
4. Enclose in parentheses, no commas i.e., (hkl)

PRACTICE

Crystallographic Planes

Crystallographic Planes

Family of Planes $\{h k /\}$
Ex: $\{100\}=(100),(010),(001),(\overline{1} 00),(0 \overline{1} 0),(n \cap \overline{1})$

Crystallographic Planes (HCP)

- In hexagonal unit cells the same idea is used

example		a_{1}	a_{2}
1.	a_{3}		
2.	Reciprocals	1	∞
-1			
3.	Reduction	1	$1 / \infty$

Adapted from Fig. 3.8(a),

Crystallographic Planes

- We want to examine the atomic packing of crystallographic planes
- Iron foil can be used as a catalyst. The atomic packing of the exposed planes is important.
a) Draw (100) and (111) crystallographic planes for Fe.
b) Calculate the planar density for each of these planes.

Planar Density of (100) Iron

Solution: At $\mathrm{T}<912^{\circ} \mathrm{C}$ iron has the BCC structure.

Planar Density of (111) Iron

Solution (cont): (111) plane 1 atom in plane/ unit surface cell

Section 3.16 - X-Ray Diffraction

Electromagnetic Spectrum

- Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.
- Can't resolve spacings $<\lambda$
- Spacing is the distance between parallel planes of atoms.

X-Rays to Determine Crystal Structure

- Incoming X-rays diffract from crystal planes.

Measurement of critical angle, θ_{c}, allows computation of planar spacing, d.

X-Ray Diffraction Pattern

Diffraction pattern for polycrystalline α-iron (BCC)
Adapted from Fig. 3.20, Callister 5e.

SUMMARY

- Atoms may assemble into crystalline or amorphous structures.
- Common metallic crystal structures are FCC, BCC, and HCP. Coordination number and atomic packing factor are the same for both FCC and HCP crystal structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Crystallographic points, directions and planes are specified in terms of indexing schemes.
Crystallographic directions and planes are related to atomic linear densities and planar densities.

SUMMARY

- Materials can be single crystals or polycrystalline. Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains.
- Some materials can have more than one crystal structure. This is referred to as polymorphism (or allotropy).
- X-ray diffraction is used for crystal structure and interplanar spacing determinations.

